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Executive Summary

As debris mitigation practices improve, catastrophic collisions involving large debris
objects can become the dominant source of debris pollution in low Earth orbits.
These collisions will produce hundreds of thousands of debris fragments in the cen-
timeter range (“shrapnel”) that are hard to track, but could be lethal to operational
spacecraft.

There are non-trivial costs associated with catastrophic collisions and their
consequences, some of them not immediately obvious. Our primary goal was to
find a way to calculate the average statistically expected loss of assets after a cata-
strophic collision in a transparent and compact manner. We want it to be suitable
for direct parametric analysis by decision makers, the space insurance industry, and
the scientific community alike.

We did not rely on the existing fragmentation models, because they still need
to be updated based on the latest on-orbit collision data. Instead, we used the two
most relevant empirical data points, the Fengyun-1C and Cosmos-Iridium events, to
develop a high-level phenomenological model of production, distribution, and accu-
mulation of small but lethal fragments in catastrophic collisions. The model is sta-
tistical and operates with mass distributions and virtual fluxes of debris fragments.
It allows analytical evaluation of the statistically expected damage to operational
satellites from future collisions in LEO.

Using this model, we have found that the primary loss occurs not in the
catastrophic collision itself, but within a decade after the collision, when a piece of
untracked “shrapnel” produced in that collision hits a high value asset. It could be
a “hidden” loss, because it may be hard to determine the true reason for the asset
failure.

We believe that the production of “shrapnel” and its long-term impact on the
LEO environment are usually underestimated. The existing focus is biased toward
trackable fragments over 10 cm. The average expected rate of production of lethal
but untracked “shrapnel” will continue to grow with new launches, and will remain
substantial until wholesale removal is achieved. The fragment yield of an average
catastrophic collision is likely to exceed the yield of the Fengyun-1C and Cosmos–
Iridium events combined. Removal of a few large debris objects per year would
not reduce the rate and fragment yield of catastrophic collisions in LEO enough to
prevent accumulation of “shrapnel” at altitudes above 800 km, where it will persist
for a very long time.

Our model clearly shows how different debris removal campaigns would affect
average statistically expected production of “shrapnel” in LEO and why wholesale
removal of large debris is necessary for restoring the LEO environment.

We also suggest that most “shrapnel” may be produced by “hypervelocity
sprays” shredding those parts of colliding objects that missed the direct impact.
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1. Introduction

It is now recognized that a single catastrophic collision between intact objects in
LEO can negate many years of debris mitigation efforts. We will see below that
an average catastrophic collision is likely to be on the scale of the Fengyun-1C
and Cosmos–Iridium events combined. They produced on the order of 400,000
fragments in the centimeter range (“shrapnel”), an amount comparable to the ac-
cumulation of explosion fragments over 50 years of spaceflight. These fragments
are currently untracked and impossible to avoid, but they can disable or seriously
damage operational satellites. The full extent of LEO pollution resulting from five
decades of space activities and various unplanned events will be more obvious when
small fragments become trackable with new observation techniques in the future. In
this new world, the everyday task of collision avoidance will be much more difficult
due to the sheer number of objects to avoid, and the task of debris removal will
look much more urgent.

In order to prevent further LEO pollution with more fragments produced in
catastrophic collisions, large debris objects, the primary source of future “shrapnel,”
should be removed from densely populated regions in LEO [1,2,3]. There is a range
of opinions on how many objects should be removed annually. NASA has been
conservatively suggesting removal of five large objects per year [1], assuming 90%
post-mission disposal compliance, while ESA has indicated that there may be a need
to remove up to 27 objects per year in some scenarios [2]. These campaigns would
be long-term in nature, and it would take a very long time to get rid of the 2,200
large debris objects currently in low Earth orbits. During this time, catastrophic
collisions and production of “shrapnel” will continue. The authors of this paper
recently argued in favor of a short-term wholesale debris removal campaign [3], in
which electrodynamic “garbage trucks” of the latest design could remove several
hundred objects per year at a very reasonable cost, and LEO could be mostly free
of large debris objects in a decade or so. In this scenario, catastrophic collisions
will become very unlikely, and practically no more “shrapnel” will be produced.

Before decisions can be made on debris removal campaigns, we need to better
understand and evaluate the potential impact of future catastrophic collisions on
operational spacecraft. One of the pioneering studies in this area was undertaken
by the Aerospace Corporation [4]. The study evaluated added costs of operating
three types of constellations in a gradually deteriorating LEO environment. The
existing models of the LEO debris environment, such as ORDEM, MASTER, and
others, could be used for such evaluations, however, they are rather complex due
to the level of detail and not easy to apply in analytical studies. In addition, their
implementations are numeric, and details of these implementations are not publicly
available. In this paper, we formulate a relatively simple analytical model and apply
it to the evaluation of the cost of future collisions in LEO.
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We will not rely on the existing fragmentation models, because we expect
them to be updated based on the latest on-orbit collision data. Instead, we will
use the two most relevant empirical data points, the Fengyun-1C and Cosmos-
Iridium events, to develop a high-level phenomenological model of production and
accumulation of small but lethal fragments in catastrophic collisions. While it is
more common these days to use size distributions, we will use mass distributions of
fragments to estimate the loss of assets, because damage is determined not so much
by the size, but by the mass of a fragment hitting the asset. Several “tunable”
parameters will be introduced. We will point out their likely values, but these
values can be easily adjusted as more data becomes available.

2. Future catastrophic collisions

Let us consider a set of objects {Bk} large enough to cause catastrophic collisions
with spacecraft and upper stages in LEO. This set includes operational spacecraft
as a subset {An}. To evaluate the statistical impact of future catastrophic collisions
and quantify the difference between removing and not removing large debris objects,
we will exclude all small debris fragments currently in orbit from calculations. They
represent the background risk that already exists and does not depend on the future
removal of large debris. The risk of damage to the assets An has two components
that strongly depend on the persistence of large debris: a) the assets can collide
with one of the objects Bk, and b) they can be hit by fragments Sk generated in
future catastrophic collisions between the objects Bk. Fig. 1 illustrates these two
possibilities. The damage of the first kind is done immediately by the collision,
while the damage of the second kind is delayed and may not even be identified as
debris-related when it occurs.

Fig. 1. Collisions with objects (a) and their fragments (b).

The orbits of LEO objects are evolving with time, and there are many inherent
uncertainties in their evolution, making predictions difficult and not very reliable.
Instead of simulating the long-term evolution, we suggest looking at statistical
snapshots derived from the current state at any given time in order to understand
the developing trends.
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We start by calculating the annual probabilities Pij of collisions between ob-
jects Bi and Bj based on averaging over a representative period of time. A method
developed by Kessler [5] can be applied to this calculation, as well as other ap-
proaches. For the purposes of this article, we will use a simplified method described
in Appendix A. The values Pij are rather small, and we will retain only linear terms
in the cumulative probability calculations.

The annual probability of a catastrophic collision is calculated as

Pc =
∑
i<j

Pij , (1)

while the annual probability that an object Bk will be involved in a catastrophic
collision is given by

Pk =
∑
i ̸=k

Pki. (2)

If the object successfully maneuvers to avoid tracked objects, all values Pki can be
set to 0, resulting in Pk = 0. However, untracked objects cannot be avoided.

The average statistically expected yield of fragments in a catastrophic collision
in terms of mass is calculated as

Mf =
1

Pc

∑
i<j

(Mi +Mj)Pij =
1

Pc

∑
k

MkPk, (3)

where Mk are the masses of the objects Bk. In the current LEO debris field, the
average yield is about 2.7 tons, which is more than the yield of the Fengyun-1C
and Cosmos-Iridium events combined. Fig. 2 shows the distribution of the expected
fragment yields by 1-ton ranges. The last bar covers the range from 10 to 17 tons.
We see that the Cosmos-Iridium collision was on the small side. Over 60% of the
catastrophic collisions will yield more than 2 tons of fragments.

Fig. 2. Distribution of the yield of fragments.
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Judging by the number of small fragments produced in the Fengyun-1C and
Cosmos-Iridium events (see Appendix B), we can expect on the order of half a
million “shrapnel” pieces in the centimeter range to be released in an average cat-
astrophic collision. Collision fragments form streams centered around the orbits of
the originating objects, and with time, their nodes spread due to the differential
nodal regression, forming shells around the Earth and creating substantial addi-
tional risk to the operational satellites. This risk can be expressed in terms of the
average statistically expected damage to the assets in LEO. We will use a concept
of a virtual stream of collision fragments for this purpose.

3. Virtual streams of collision fragments

Let us consider a phase space where the semi-major axes, eccentricities and incli-
nations of the orbits of the objects Bk are set at their current values, but other
parameters are randomly distributed. For each pair of objects Bk and Bi, we look
at all possible collision geometries and derive an average distribution ρki(m,H)
describing mean statistical properties of the stream of fragments of the object Bk

expected to be produced in a collision with the object Bi, where

dN = ρki(m,H) dmdH

is the average number of fragments with masses between m and m+ dm expected
to be found at altitudes between H and H + dH. Keeping in mind that some
fragments will be reentering shortly after collisions, the total mass of the fragments
will be less or equal to the original mass Mk of the object Bk,∫ ∞

0

∫ ∞

0

mρki(m,H) dmdH 6Mk. (4)

The average statistically expected distribution of fragments of the object Bk

generated in a possible collision with another object can be calculated as

ρk(m,H) =
1

Pk

∑
i

Pki ρki(m,H), (5)

where Pk is the the annual probability (2) of a collision involving the object Bk.
The total statistically expected stream of fragments produced in a catastrophic
collision can be characterized by the following distribution

ρc(m,H) =
1

Pc

∑
i<j

(ρij + ρji)Pij =
1

Pc

∑
k

Pk ρk(m,H), (6)

where Pc is the annual probability of a catastrophic collision (1). The streams
of fragments characterized by distribution (5) and (6) are virtual, because they



8

are synthesized from the probability-weighted and time-averaged streams from all
possible catastrophic collisions. However, we can treat them as physical streams
for the purpose of statistical damage calculations.

We will now focus on a very narrow range of fragment masses around 1 g
that are believed to be at the “threshold of lethality” in terms of the impacts on
the operational satellites. For short-term projections in this range, we will separate
mass and altitude distributions by setting

ρki(m,H) = fki(m) gki(H). (7)

We will also use cumulative distributions

Fki(m) =

∫ ∞

m

fki(µ) dµ (8)

and

Gki(H) =

∫ ∞

H

gki(h) dh. (9)

Appendix B suggests a simple power law distribution for the number of frag-
ments heavier than m,

Fki(m) = κkiMk (mc/m)γ , (10)

where mc = 1 g is a characteristic mass, κki is the average statistically expected
yield of fragments heavier than mc per unit mass of the object Bk produced in
a collision with the object Bi, Mk is the mass of the object Bk, and γ ≈ 0.8.
Based on the data from the Fengyun-1C and Cosmos-Iridium events, an estimate
of κki ≈ 24/kg is derived in Appendix B. For each object, the average yield will
depend on its composition and design. The corresponding distribution density is

fki(m) = κkiMkγ m
γ
c /m

γ+1. (11)

Analysis in Appendix C suggests the following approximation for the altitude
distribution of collision fragments

n(h, h0) =
k0
hs

(
1 +

|h− h0|
hs

)−b

, (12)

where h0 is the collision altitude, hs is the scale height of the distribution, b ≈ 2.37,
and k0 = (b− 1)/2 ≈ 0.69 is a normalization coefficient, such that∫ ∞

0

n(h, h0) dh = 1.

Characteristic values of hs are estimated in Appendix C for tracked collision frag-
ments, however, there is no data on small untracked fragments. It is anticipated
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that their altitude distributions should be wider, and we will use values ∼150 km
for fragments ∼1 g. Calculations show that the overall results do not change much
within a reasonable range of hs.

Each object Bk moves between its perigee Hpk and apogee Hak. With a
relatively small eccentricity, typical in LEO, the altitude residence density according
to the laws of Kepler’s motion can be approximated as

rk(h) ≈
1

π
√
(Hak − h)(h−Hpk)

. (13)

The altitude residence density ri(H) of another object Bi is similarly distributed
between its perigee Hpi and apogee Hai. If these altitude ranges overlap, the two
objects can collide at some altitude h0 within the overlapping range (h1, h2). Then,
the probability-weighted altitude distribution of the virtual stream of fragments
from all possible collisions between the two objects is obtained by integration

gki(H) =
1

Rki

∫ h2

h1

n(H,h0) rk(h0) ri(h0) dh0, (14)

where n(H,h0) is defined by (12), and the normalization coefficient is

Rki =

∫ h2

h1

rk(h0) ri(h0) dh0.

The corresponding cumulative distribution (9) is calculated as

Gki(H) =
1

Rki

∫ h2

h1

N(H,h0) rk(h0) ri(h0) dh0, (15)

where N(h, h0) is the cumulative distribution for the density (12)

N(h, h0) =

{
(1 + |h− h0|/hs)1−b/2 with h > h0,

1− (1 + |h− h0|/hs)1−b/2 with h < h0.
(16)

Fig. 3. Altitude profile of the virtual flux depending on the eccentricity:

a) e = 0, b) e = 0.2hs/R, c) e = 0.5hs/R, d) e = hs/R.
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Fig. 3 shows how the distribution (14) widens with the eccentricity in case
when the altitude range of the object Bk is substantially narrower than the altitude
range of the object Bi. This example is equivalent to setting ri ≈ const and is given
for illustrative purposes. All profiles are shown relative to the peak value with e = 0.

As more observation data on small fragments becomes available, the model
can be updated as needed.

4. Virtual flux at a given inclination

According to formulas (5)–(7), the average statistically expected stream of frag-
ments from a catastrophic collision can be characterized by the following distribu-
tion

ρc =
∑
k

Sk, Sk =
1

Pc

∑
i

Pki fki(m) gki(H). (17)

It represents a superposition of the individual sub-streams Sk of the future collision
fragments of the objects Bk. The orbits of the fragments in each sub-stream Sk will
have inclinations close to the inclination ik of the originating object Bk, but their
ascending nodes will be widely dispersed due to the nodal regression and statistical
averaging over all possible realizations of the collision process. When an asset An

crosses paths with a fragment Fk from a sub-stream Sk, the probability of a hit will
depend on the conjunction geometry, and in particular, on the angle αnk between
their trajectories at the conjunction point (Fig. 4).

Fig. 4. Conjunction geometry.

To evaluate the virtual flux encountered by the assets at different inclinations,
let us consider a sphere of radius rn moving in a circular orbit of radius Rn (altitude
Hn) at an inclination in. The average number of fragments of the virtual stream
(17) heavier than m found in the spherical layer (Rn− rn, Rn+ rn) is calculated as

Nr =
∑
k

Nrk, Nrk = 2rn

∫ ∞

m

Sk(µ,Hn) dµ. (18)

The fragments generally move in elliptic orbits, entering and leaving the spher-
ical layer, but the counts Nrk are maintained on average. To estimate the number



11

of hits on the sphere, we will consider an equivalent flux of fragments moving in cir-
cular orbits with random nodes and random phasing in the layer (Rn−rn, Rn+rn).
In this formulation, each fragment will cross the orbit of the sphere two times per
orbit. Using the method described in Appendix A and integrating over the cross-
section, the average probability of a hit by a fragment from a sub-stream Sk at any
given crossing is estimated as

Pβk ≈ rnβnk
4Rn

, (19)

where

βnk =
1

2π

∫ 2π

0

dφnk

cos(αnk/2)
, (20)

and the averaging takes place over the ascending node differences φnk between the
orbit of the sphere and the fragments from the virtual sub-stream Sk.

Fig. 5. “Inclination pairing” coefficient for sun-sync objects.

The multipliers βnk reflect what Carroll called “inclination pairing” [6]. They
peak when in + ik approaches 180◦. It means, in particular, that sun-sync assets
will be strongly “paired” with the future fragments of the objects from the 81–
83◦ cluster, as illustrated in Fig. 5. This happens because their orbits precess in
the opposite directions, and when they become nearly coplanar, the objects and
fragments move head-on, greatly increasing the probability of a hit.

The total number of fragments of the virtual sub-stream Sk hitting the test
sphere every orbit will be 2NrkPβk. Dividing this number by the collision cross-
section area of the sphere πr2n and by the orbital period 2π/ωn, where ωn is the
angular rate of the orbital motion, and performing summation over all sub-streams,
we find that the average virtual flux of future collision fragments heavier than m
encountered by an asset An orbiting at an inclination in can be approximated as

Φn ≈ kn
Pc

∑
k,i

βnk Pki Fki(m) gki(Hn). (21)
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where Fki(m) is the cumulative distribution (8), Hn is the average altitude of the
asset An, and

kn =
ωn

2π2Rn
.

Fig. 6. Post-collision increase of the debris flux on sun-sync

assets: a) m > 0.5 g, b) m > 1 g, c) m > 2 g.

The flux of fragments with masses between m and m + dm is calculated as
Ψndm, where

Ψn ≈ kn
Pc

∑
k,i

βnk Pki fki(m) gki(Hn). (22)

Formulas (17) and (21) characterize the current state of the LEO debris field
in terms of the average statistically expected production of small fragments in a
catastrophic collision between large objects. Fig. 6 shows how the fluxes on sun-
sync assets will increase on average in three different fragment mass ranges after
a catastrophic collision. The virtual fluxes peak around 900 km, because this is
where the primary sources of the future fragments are concentrated.

It is interesting to note that a fairly accurate approximation for the overall
flux can be obtained by replacing the weighted distributions (14) in formulas (21)–
(22) with the base distributions (12) centered around the middle of the altitude
overlap. It works because the altitude overlaps are typically small compared to the
scale heights of the altitude distributions, and because the number of objects is
large.

5. The cost of a catastrophic collision

The cost of a catastrophic collision includes an immediate loss, if an asset was
destroyed in the collision, and a delayed loss, if other assets were damaged later
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by the fragments produced in the collision. The average statistically expected
immediate loss caused by a catastrophic collision can be evaluated as

Lc =
1

Pc

∑
i<j

(Li + Lj)Pij =
1

Pc

∑
k

LkPk, (23)

where Li and Lj are the losses associated with destruction of the objects Bi and
Bj , Pij is the annual probability of a collision between the objects Bi and Bj , Pc

is the annual probability of a catastrophic collision (1), and Pk is the the annual
probability (2) of a collision involving the object Bk. If an object Bk maneuvers to
avoid tracked objects, the corresponding value Pk can be set to 0.

A comprehensive database of operational satellites can be found online [7],
but the costs of the assets are not readily available, and we will assume that they
are roughly proportional to the mass of the asset,

Lk = αkMk. (24)

According to a study conducted by the Aerospace Corporation [8], the cost of de-
veloping and building satellites ranges from $100K/kg to $900K/kg. We should
add launch costs, and also account for investment losses and financial losses result-
ing from the loss of data and functionality and service interruptions in case of a
collision. If we use a conservative estimate of αk ∼ $150K/kg in formula (24), and
assume that the high value assets are successfully avoiding all tracked objects, and
that satellites in constellations actively avoid each other, the average immediate
loss will be on the order of $30M. This amount is comparable with the loss in the
Cosmos-Iridium collision.

The above calculation assumes that dead satellites and upper stages have no
value (αk = 0). This may not be the case. The authors have argued recently [9]
that these objects may be used as a source of materials. It took a lot of money to
put them in orbit, and they still carry some residual value. For example, there are
about 1,000 tons of mostly aluminum in the upper stages alone, and it would take
$5–10B and many years to launch this amount of metal into orbit. The real cost of
this “scrap metal” cannot be fully discovered until (and unless) the market develops,
but there is a logical range for it. On the one hand, the cost per kilogram must be
much lower than the launch costs to create demand. On the other hand, it must
be substantially higher than the cheapest delivery cost to create supply. The cost
of delivery with electrodynamic vehicles has been estimated at ∼$400/kg [3]. With
the current launch prices, a rate of αk ∼ $1K/kg may drive both the supply and
demand sides of in-orbit recycling. At this rate, on the order of $3M of potentially
recyclable materials will be lost on average in a catastrophic collision.

These amounts pale in comparison with the amount of the post-collision (de-
layed) damage. To evaluate the statistically expected delayed damage to the assets
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An from the fragments produced in a catastrophic collision, we need to specify their
loss functions. A hit by a relatively large fragment within the body area will typi-
cally result in a total loss, while a hit by a relatively small fragment may cause only
minor damage. Fragments of intermediate sizes may disable some components, but
not cause a total loss. To quantify partial losses for the assets An, we introduce
loss functions ζn(m) depending on the mass of the fragments, such that 0 6 ζn 6 1
and dζn/dm > 0 (Fig. 7). They represent statistical averages over all possible hits
by fragments of a given mass.

Fig. 7. Typical loss function.

We will also account for the depreciation of the asset values with time by
introducing depreciation coefficients ηn(t), such that ηn(0) = 1 and dηn/dt < 0.
Then, an average statistically expected damage from a hit of a fragment of mass m
at time t after the collision can be expressed as

dn(m, t) = Ln ζn(m) ηn(t), (25)

where Ln is the amount of a total loss. Using formulas (22) and (25), the average
statistically expected damage to the asset An over its lifetime Tn caused by the
collision fragments can be evaluated as

Dn =

∫ Tn

0

ηn(t) dt

∫ ∞

0

Lnζn(m)σnΨn dm, (26)

where σn is the average collision cross-section area of the asset An, and the flux
density Ψn is defined by (22) at the average altitude Hn of the asset An, assuming
that the eccentricity of its orbit is relatively small. Note that the sum in Ψn should
not include terms associated with the asset itself, because the asset cannot be hit
by its own future fragments.

With exponential depreciation ηn(t) = e−χnt, and the power law distribution
(10) of the fragments by mass, formula (26) is reduced to

Dn = LnTnqnσnΦn, (27)

where the average depreciation coefficient

qn = (η∗n − 1)/ ln η∗n (28)
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is expressed through the end-of-life value η∗n = ηn(Tn), and Φn is calculated at the
effective “lethality threshold” mn determined from the following relation∫ ∞

0

ζn(m)
γ dm

m1+γ
= m−γ

n . (29)

The threshold mn is shown by the dashed line in Fig. 7.

In our estimates, we will assume that the threshold mass mn can be related
to the mass of the asset as

mn ≈ εnM
δ
nm

1−δ
c , (30)

with typical values of εn ∼ 10−3, δ ≈ 0.5, and mc = 1 g. This would mean,
for example, that a 1-ton satellite can sustain serious damage from a 1-g debris
fragment. Keep in mind that relative velocities in LEO can reach 15 km/s, and
hits by even small fragments can be very destructive.

The total statistically expected delayed damage to all assets in LEO resulting
from a catastrophic collision

Dc =
∑
n

Dn (31)

is estimated to be on the order of $200M, assuming αn ∼ $150K/kg in formula
(24). A substantial fraction of this damage will come from impacts on high-value
assets, not only because they are expensive, but also large.

6. Persistence of small fragments

Once created, the fragments could persist for a long time. Let us consider a model
problem of the long-term evolution of a population of fragments with equal ballistic
coefficients. We will assume for simplicity that the fragments are in nearly circular
orbits. Their orbital decay can be described by the following equation

Ḣ = −λ ρa(H), (32)

where H is the average altitude, dot represents differentiation with respect to time,
λ = bcvR, bc is the ballistic coefficient, v is the orbital velocity, R is the orbit
radius, and ρa(H) is the average air density at the altitude H. With the focus on
long-term evolution, we will use multi-year averages for the air density.

A single solution H = H(t) of equation (32) over the range of altitudes of
interest will define the evolution of the entire population. Let us consider two
points of this solution, H1 = H(t1) and H2 = H(t2), t1 < t2. In time t = t2 − t1,
the fragments from the altitude H1 will move to the altitude H2, and the fragments
from the altitude H1 + dH1 will move to the altitude H2 + dH2, where

dH2/Ḣ2 = dH1/Ḣ1, (33)
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and Ḣ1 and Ḣ2 are the decay rates at the altitudes H1 and H2 according to (32). As
all fragments from the layer dH1 move to the layer dH2, the average spatial density
of fragments changes from n1 to n2, conserving the total number of fragments,

n1dH14πR
2
1 = n2dH2 4πR

2
2 . (34)

Taking into account (33), relation (34) translates into a curious “time-delayed”
form of the continuity equation for the vertical flow of fragments,

n1Ḣ1R
2
1 = n2Ḣ2R

2
2 . (35)

If we disregard the change in the orbit radius compared to the change in the
air density, we will arrive at a remarkably simple relation describing the long-term
evolution of the fragment density,

n1ρa(H1) ≈ n2ρa(H2). (36)

For practical calculations, it is easier to integrate (32) backward in time, or
use a “reverse” equation

Ḣ = λ ρa(H). (37)

Now, we can calculate the density n at any altitude H and time t as

n(H, t) ≈ n(Ht, 0) ρa(Ht)/ρa(H), (38)

where Ht is the altitude reached at time t along the solution of equation (37) with
the initial altitude H, and n(Ht, 0) is the initial density at the altitude Ht at time
t = 0. A typical solution of equation (37) for small fragments with bc ∼ 0.5 m2/kg
is plotted in Fig. 8.

Fig. 8. A typical altitude function for small fragments.
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For an exponential air density profile with a constant scale height Ha, it can
be expressed as

Ht = H +Ha ln(1 + λt ρa(H)/Ha), (39)

if we disregard the variation of λ with the altitude. Then, relation (38) takes the
form

n(H, t) ≈ n(Ht, 0)

1 + λt ρa(H)/Ha
. (40)

Even though it was derived for a constant scale height, formula (40) provides a fairly
good approximation for the evolution in the atmosphere with a variable scale height.
The value Ha in formula (40) can be taken at the altitude H, or as an average
between the values at the altitude H and the altitude Ht for better approximation.

Fig. 9. Sample density profiles for small fragments in

a) 1 year, b) 3 years, c) 10 years, d) 30 years.

Fig. 9 illustrates the evolution of a constant initial profile n(H, 0) ≡ n0 for
small fragments with bc ∼ 0.5 m2/kg. We see that they can persist for a really long
time near and above the peak of their production shown in Fig. 6.

Formulas (38) and (40) can be applied directly to sub-populations of fragments
with different ballistic coefficients in the virtual stream (17). However, we would like
to look at the overall trend from another point of view. Considering all realizations
of the succession of collisions in time, we find that the density of the average virtual
stream of collision fragments grows as

ρτ = τ U(m,H), (41)

where τ is time in years, and the annual production rate U is derived from (17),

U(m,H) =
∑
k,i

Pki fki(m) gki(H). (42)

The average time in years between catastrophic collisions is equal to τc =
1/Pc, where Pc is the annual probability of a catastrophic collision (1). At τ =
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Fig. 10. The virtual stream and collision events.

τc, formula (41) turns into (17), as expected, because it reflects accumulation of
the collision probability with time. Fig. 10 illustrates the relation between the
growth of the average virtual stream (41) and a particular realization of the collision
process. Virtual streams can also be evaluated as averages of many simulation runs
in numerical models of the debris environment [1,2,10].

According to formula (41), the fragments in the average virtual stream are
produced at a constant rate (42). In a small period of time dτ , the fragment density
is increased by dρ = Udτ . Once created, the fragments start migrating down at the
rates proportional to the air density at their altitudes. After time τ at an altitude
H, we will see fragments from all layers between H and Hτ , where Hτ is defined by
the solution of equation (37) with the initial altitude H. Taking into account the
density scaling rule (35) and disregarding the radius variation between the layers,
we find that

ρτ (m,H) ≈
∫ τ

0

Ḣt

Ḣ
U(m,Ht) dt̃ =

1

λtyρa(H)

∫ Hτ

H

U(m,h) dh, (43)

where t̃ = t/ty is time in years, and ty is a period of one year. Integration yields

ρτ ≈ 1

λtyρa(H)

∑
k,i

Pki fki(m) [Gki(H)−Gki(Hτ )], (44)

where Gki(H) is the cumulative distribution by altitude (9), which can be applied
in a particular form of (15).

Transitioning to the average flux, as we transitioned from (17) to (21), we
derive the following formula for the average virtual flux of fragments heavier than
m, adjusted for the orbital decay due to air drag,

Φn ≈ kn
λtyρa(H)

∑
k,i

βnk Pki Fki(m) [Gki(H)−Gki(Hτ )], (45)

where the coefficient kn has the same meaning as in formula (21).

To account for the variability of the ballistic coefficients of the fragments [11],
we use a statistical average

Φa =

∫ ∞

0

Φn n(bc) dbc, (46)
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where n(bc) is a statistically expected distribution of the ballistic coefficients bc of
the fragments in the narrow range of masses around mc normalized as∫ ∞

0

n(bc) dbc = 1.

Fig. 11. Growth of the virtual flux of fragments over 1 g.

Fig. 11 illustrates the growth of the average virtual flux encountered by sun-
sync assets with the accumulation of collision fragments over 1 g, taking into account
their orbital decay due to air drag. These multi-year projections merely illustrate
the current trend, they do not predict the future. We see that the accumulation
near and above the peak of production will not be reduced much by air drag, while
the ISS altitudes will not see high accumulation because the fragments will pass
through quickly. The altitude profiles shown in Fig. 11 are similar to the profiles
predicted by the debris evolution models [1, 10].

Even though this model is not intended for century-long projections, it cap-
tures the fact that the accumulating flux will be evolving toward a balance between
the production and the decay of collision fragments (dashed line in Fig. 11), as the
contribution of the terms Gki(Hτ ) in (44)–(45) becomes smaller and smaller.

Similarly to formulas (21)–(22), fairly accurate approximations for (44)–(45)
can be obtained by replacing the weighted distributions (15) with the base distri-
butions (16) centered around the middle of the altitude overlap.

7. Effectiveness of debris removal campaigns

The model described in this paper can be used to evaluate the effectiveness of var-
ious debris removal campaigns. A simple way is to look at the average statistically
expected yield of fragments in terms of mass (3) and plan for the maximum re-
duction of the corresponding annual yield MfPc with given campaign resources.
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From this standpoint, the remove-first list should include objects with high values
of MkPk, where Mk is the mass of the object Bk, and Pk is the annual probability
(2) of a catastrophic collision involving this object.

A formula similar to (3) can be derived for the average number of fragments
heavier than mc = 1 g statistically expected to be produced in a catastrophic
collision,

Nf =
1

Pc

∑
i<j

(κijMi + κjiMj)Pij =
1

Pc

∑
k

κkMk Pk, (47)

where Pc is the annual probability of a catastrophic collision (1), κk is the average
yield of fragments per unit mass of the object Bk,

κk =
1

Pk

∑
i

κki Pki, (48)

Pki are the annual probabilities of a collision between the objects Bk and Bi, and
the specific yields κki are defined in (10). The corresponding annual yield is NfPc.
According to (47), objects with high values of κkMkPk should be considered for
early removal or collection.

Formulas (21) and (45) further reveal the importance of the “inclination pair-
ing” characterized by the coefficients βnk from (20). In order to reduce the future
threat to the most popular orbits, such as the sun-sync orbits, we would need
to remove objects with high values of βnkκkMkPk, where the coefficients βnk are
computed for those particular inclinations.

Fig. 12. Reduction of the number of future collision

fragments with removal of large debris objects.

Fig. 12 illustrates how the number of small fragments heavier than 1 g pro-
duced in catastrophic collisions and accumulated in LEO over the next 50 years
can be reduced by removing large debris objects now. The projections are based
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on formulas (44)–(45), accounting for the population decay due to air drag. We
see that only removal of hundreds of tons of large debris can radically change the
future situation in LEO. This is true whether we use formulas (17), (21), (44)–(45),
or (47) for the evaluation.

The analysis of the contributions of various sub-populations of large debris
objects suggests that the cleanup efforts should focus on the 71–74◦, 81–83◦, and
sun-sync clusters (see also [3]). Removing all rocket bodies from these clusters could
reduce the future growth of the population and fluxes of small but potentially lethal
debris fragments by a factor of four.

8. Modeling catastrophic collisions

The model described earlier does not assume any particular fragmentation mecha-
nisms, but we would like to share some observations that may be useful in collision
fragmentation modeling.

It may seem puzzling at first that the streams of fragments produced in the
Cosmos-Iridium collision were tightly focused around the original trajectories of
the satellites. It was as if the satellites passed through each other while breaking
up. The reason becomes clear from studying the collision geometry. Statistically,
most collisions between large objects will have large enough offsets that only modest
parts of each object will try to pass through each other directly. For example, same-
size circles will have a median overlap of only 18% of the area of each circle. With
spheres, the median volume overlap is only 11%. With same-size squares at random
angles, the median area overlap is less than 10%, and the median volume overlap
for collisions of equal-size cubes is even lower. With similar but not identical sizes,
the numbers become lower for the large object and higher for the small one, until
a limit is reached, where most collisions fully involve the smaller object.

Masses colliding at up to 15 km/sec create pressures and pressure gradients
so large that even solid metals become very compressible. Compression may cause
enough adiabatic heating to melt the material, but this may be mostly reversible, as
with gases. Extreme pressures and gradients may let most materials shear nearly
freely. Shear causes irreversible heating, but the heating cuts shear strength, so
materials might keep shearing without generating much more heat. Eventually
directly colliding parts will tear apart into irregular hypervelocity sprays of liquid
and re-solidified material.

Hypervelocity tests on the ground show a cloud of tiny particles whose leading
edge moves out at velocities 30–50% higher than the impact velocity. Even though
the kinetic energy of a typical hypervelocity collision is sufficient to heat, melt,
and vaporize materials such as aluminum, most of the energy can be carried away
by the kinetic energy of the sprays, without being thermalized. Some mass will
be vaporized, but the vapor will expand slower and carry far less momentum and
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energy than the splashed solid or liquid. The greater mass, speed, and the irregular
distribution of splashed mass should make it much more effective at shredding the
parts that missed direct impact. Such shredding may create substantially more
small shrapnel than other fragmentation mechanisms.

Most of the mass of both rocket bodies and satellites is sheet-like, whether it
is part of a tank, rocket engine, structure, solar array, radiator, circuit board, or
battery. Hypervelocity spray from directly-impacting parts can shred these sheets
into random sizes down to a few times the sheet thickness. Two- vs many-layer
designs could make rocket shrapnel different from satellite shrapnel. Most such
shrapnel may keep its original thickness over much of its area, and the area-to-
mass distribution of fragments may be estimated from the bill of materials.

Analysis of the trajectories of tracked fragments shows that they were ejected
from the source objects with velocities of a few percent of orbital velocity. Colliding
spacecraft are not “bullets in foam” or “crossed pitchforks,” and the question is why
their fragments departed at relatively low velocities. The characteristic velocity may
be determined by the shear strength and toughness of typical aerospace materials.
Shredding sheet-like materials with hypervelocity sprays need not transfer much
momentum; it simply cuts the sheets, much as a fast-moving knife can cut an apple
without affecting its trajectory much.

Livermore Laboratory conducted a simulation of the Cosmos-Iridium collision
using a sophisticated hydrodynamic model with close to a million finite elements per
satellite [12]. This model, however, did not simulate processes on the sub-centimeter
scale and could not capture the formation of fine hypervelocity sprays. It may not
be practical to extend the modeling to a sub-millimeter scale for the entire satellite,
but there is another approach. It is similar to experiments in particle accelerators.
If a target few centimeters in diameter is hit by a centimeter-size projectile at a
velocity typical for orbital collisions, the formation of hypervelocity sprays can be
observed experimentally and modeled theoretically down to the sub-millimeter level.
Shredding by hypervelocity sprays can be observed by placing typical spacecraft
parts around the target and simulated by using particle penetration models [13].

9. Conclusions

Catastrophic collisions between the large objects in LEO will produce hundreds of
thousands of debris fragments in the centimeter range (“shrapnel”). The fragments
of these sizes are currently untracked and impossible to avoid, but they can disable
or seriously damage operational satellites. Statistically, the fragment yield of an
average catastrophic collision will be comparable to the yield of the Fengyun-1C
and Cosmos–Iridium events combined.

To describe future production and accumulation of small collision fragments,
the concept of a virtual stream of fragments is introduced. The virtual stream is
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synthesized from the probability-weighted and time-averaged streams of all possible
catastrophic collisions between intact objects in LEO. It reflects the current trends
in terms of the average statistically expected rates of growth of the population of
small collision fragments for any given population of intact debris objects in LEO.

The model is calibrated using available data from the Fengyun-1C and Cosmos–
Iridium events. With some simplifying assumptions, the model allows analytical
evaluation of the average statistically expected damage to operational satellites
from future collisions in LEO. Most of the damage will result from impacts of small
fragments in the centimeter range over the years after each catastrophic collision.
The model also provides analytical criteria for the effectiveness of debris removal
campaigns. It shows that only removal of hundreds of large debris objects from
the congested regions in LEO can radically change the current trends in the LEO
debris environment.
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Appendix A

COLLISION PROBABILITY CALCULATION

Fig. A1. Intersection of the orbital disc areas.

Let us consider two objects A and B in precessing Keplerian orbits with rel-
atively small eccentricities. The semi-major axes, eccentricities and inclinations
are assumed fixed, but other parameters are random. In the multitude of all pos-
sible realizations, the trajectories fill the disc areas between the perigee and the
apogee, while the disks assume different orientations through their rotation about
the Earth’s axis. The sweep of the phase space is achieved through random initial
conditions, apsidal precession, and nodal regression.

If the discs intersect, as shown in Fig. A1, collision is possible at the intersec-
tion line. Object A crosses the intersection line twice per orbit, or

Ny =
ty
π/ω

=
ωty
π

(A1)

times per year, where ty is a period of one year, and ω is the mean orbital rate.

With random phasing, the probability of crossing the intersection line between
altitudes h and h+ dh is derived from the laws of Keplerian motion as

PA(h) dh ≈ dh

π
√

(Ha − h)(h−Hp)
, (A2)

where Ha is the apogee and Hp is the perigee altitude. Object B has a similar
probability distribution PB(h) with its own apogee and perigee altitudes.
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The conditional probability that the two objects will be within “touching
distance” in the direction of the intersection line is obtained by integration

Pr ≈
∫ H2

H1

PA(h)PB(h) (D1 +D2) dh, (A3)

where D1 and D2 are the typical dimensions of the objects, and (H1,H2) is the
range of overlapping altitudes.

Fig. A2. Relative motion near the intersection.

The conditional probability that the two objects will be within “touching
distance” in projection onto a reference sphere near the intersection line with given
positions of the ascending nodes of the orbits is approximated as

Pϑ ≈ D1 +D2

2πR sinϑ
, (A4)

where R is the average orbit radius, and ϑ is the angle between the tangent to the
trajectory of the object A and the velocity of the object B relative to the object A
near the intersection, as shown in Fig. A2. The reasoning is very simple. When the
center of the object B passes the intersection line, the distance between the center
of the object A and the intersection line measured along the orbit of the object A
can be anywhere between 0 and approximately πR, but a collision can occur only
when the distance is less than (D1 +D2)/2 sinϑ.

If the objects maintain certain attitude, their dimensions in formulas (A3)
and (A4) could have more specific meaning. For example, if we consider two gravi-
tationally stabilized cylinders, the dimensions in formula (A3) will represents their
heights, while the dimensions in formula (A4) will represents their diameters.

Averaging over all possible nodal positions yields

Pϑ ≈ D1 +D2

2πR
β, (A5)

where β is the “inclination pairing” coefficient, as defined by Carroll [6],

β =
1

2π

∫ 2π

0

dφ

sinϑ
, (A6)
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and φ is the ascending node difference between the orbits of the objects A and B.
Carroll suggested a good heuristic approximation

β ≈
√
1 + (a ln η)2

cos δ1 cos δ2
, η = | cos(δ1 + δ2)|+ b, (A7)

where a = 0.347, b = (D1 + D2)/2πR + (e1 + e2)/4, δ1,2 = i1,2/2, while i1,2 and
e1,2 are the inclinations and the eccentricities of the orbits, e1,2 ≪ 1. The term
b eliminates the singularity at i1 + i2 = π. It has little effect on the value of β
elsewhere.

The overall probability of collision between the objects A and B in all possible
realizations is calculated as

Pc ≈ Pr PϑNy (A8)

per year. This calculation is suitable for statistical “snapshots” and does not take
into account orbit evolution due to air drag, solar radiation pressure, and gravita-
tional perturbations other than from J2.
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Appendix B

DISTRIBUTION OF FRAGMENTS BY MASS

The total estimated number of the Fengyun-1C and Cosmos-Iridium fragments
left in orbit long enough to be observed can be derived from the NASA data [14,15].
The total mass of the three satellites was 2336 kg. This gives the average yield of
fragments per kilogram of the source mass shown in Table B1.

Table B1. Fengyun-1C, Cosmos-2251,
and Iridium-33 fragments

Size Count Yield

Over ∼0.5 cm ∼ 1.3 · 106 ∼560/kg

Over ∼2 cm ∼ 1.1 · 105 ∼47/kg

Over ∼10 cm 4680 2/kg

Now, we need to estimate the mass distribution, because the fragment mass
is the primary factor determining the impact damage to satellites. The fragments
smaller than ∼10 cm (“shrapnel”) are currently untracked, and their mass-to-area
distributions are uncertain. As the tracking capabilities improve, we will know
more about the physical properties of the shrapnel, but at this time, we have to
base estimates on ground tests and limited orbital data.

For the purpose of future damage assessment, we are most interested in a
narrow range between 0.3 and 3 g within the context of a wider range between 0.1
and 50 g. For this range, we will assume a power-law distribution

κm = κc (mc/m)γ , (B1)

where κm is the yield of fragments with masses larger than m produced on average
in a catastrophic collision per unit mass of the source object, mc is a characteristic
mass, γ > 0 is the exponent, and κc is the yield of fragments heavier than mc.

When γ ̸= 1, the fraction of the total mass of the source object accumulated
in orbiting fragments with masses between m1 and m2 is calculated as

η =

∫ κ1

κ2

mdκm =
γ

1− γ
(κ2m2 − κ1m1), (B2)

where κ1,2 = κm(m1,2). When γ = 1, the fraction of mass in this range is equal to

η1 = κcmc ln(m2/m1). (B3)

For our purposes, we set mc = 1 g, m1 = 0.1 g, and m2 = 50 g.
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Fig. B1. Variation of the fragment mass fraction with γ.

It turns out that the value of η is not very sensitive to the variation of γ:
it remains within 10% of η1 in a wide range 0.2 < γ < 1.2, as shown in Fig. B1.
Therefore, estimates for the yield κc and the mass fraction η can be related without
knowing the exact exponent γ,

κc ≈
η

mc ln(m2/m1)
. (B4)

The exponent γ comes into play in the process of “connecting the dots,”
including the fragment yields by size from Table B1, mass distributions of large
tracked fragments, observed mass-to-area distribution patterns, and the total mass
of all fragments. The mass distributions for the tracked fragments of Fengyun-1C,
Cosmos-2251, and Iridium-33 have not been published at the time of this writing,
however, there is a documented mass distribution for the tracked fragments of
Solwind (P-78) after its destruction [16]. The mass of this satellite, 878 kg according
to [14], was close to the masses of Fengyun-1C and Cosmos-2251. There are also
numbers from the series of SOCIT hypervelocity impact tests on the ground [17,18],
when a 34.5-kg Navy satellite was destroyed by a projectile moving at 6 km/s. There
were other ground tests with much smaller targets and impactors, and much lower
velocities [19].

Our analysis and fitting of the published data suggests that the exponent is
likely to be close to γ ≈ 0.8, and that around 15% of the source mass (η ≈ 0.15)
could be accumulated in fragments between 0.1 and 50 g. This percentage coincides
with an estimate for Cosmos-2251 provided in [20]. The corresponding yield of
fragments heavier than mc = 1 g will be

κc ≈ 24/kg (B5)

for satellites of this class. This estimate is comparable to the specific yield of
fragments derived from the SOCIT test data. It is also consistent with the yields
in Table 1, taking into account the mass-to-area distribution patterns observed in
the SOCIT tests [17]. We estimate that only a few percent of the source mass may
end up in fragments lighter than 0.1 g. Fragments over 50 g carry most of the mass
and are usually trackable, but they represent only the “tip of the iceberg” in terms
of the number of fragments potentially lethal for operational spacecraft.
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To put estimate (B5) in perspective, let us consider a commonly used formula

Nm = k (M/m)γ , (B6)

where Nm is the number of fragments heavier than m, and M is the total mass in-
volved in the collision. The original Kessler’s formula has k ≈ 0.8 and γ ≈ 0.8 [21],
an early version of the NASA breakup model uses k ≈ 0.45 and γ ≈ 0.75 [18], the
mass distribution of the tracked fragments of Solwind fits k ≈ 0.3 and γ ≈ 0.8 [16],
while the estimate (B5) corresponds to k ≈ 0.4 and γ ≈ 0.8 for M ∼ 1 ton. Ex-
tended formally toward masses over 10 kg, the estimated distribution converges
with the early NASA model. Debris models are evolving [22], and new breakup
models are introduced [20, 23]. They will become more accurate when more data
on small fragments is gathered.



31

Appendix C

DISTRIBUTION OF FRAGMENTS BY ALTITUDE

Fig. C1 shows profiles of the altitude residence densities using 1-km bins for the
fragments of Fengyun-1C, Cosmos-2251, and Iridium-33 in early 2011. Normalized
to the peak value and scaled in altitude, they look strikingly similar. Another
known profile for the fragments of the Solwind spacecraft destroyed in 1985 at a
substantially lower altitude of 525 km is also very similar [16].

Fig. C1. Altitude densities for fragments of a) Fengyun-1C, b) Cosmos-2251, c) Iridium-33.

Looking at the profiles from these particular events, we want to understand
the underlying structure and anticipate a statistically meaningful general pattern
that can be used in statistical calculations. Therefore, we will not try to explain
the details, but will use very simple approximations instead to capture the trends.

The profiles in Fig. C1 can be roughly approximated by the following formula

n(h) =
dNh

dh
=
Nf

hs
· k

(1 + a)b
, a =

|h− h0|
hs

, (C1)

where n(h)dh is the average number of fragments found in the altitude range be-
tween h and h+ dh, Nh is the average number of fragments found below h at any
given time, Nf is the total number of fragments, h0 is the altitude of the peak, hs
is a scale height, b ≈ 2.37, and k = (b− 1)/2 ≈ 0.69 is a normalization parameter,
such that ∫ ∞

0

n(h) dh = Nf . (C2)

The scale height hs is approximately 100 km for Fengyun-1C, 60 km for Cosmos-
2251, and 45 km for Iridium-33. The values of b and hs are not precise and can be
floated within certain ranges, which is acceptable for our purposes.
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Fig. C2. Velocity distributions for fragments of a) Fengyun-1C, b) Cosmos-2251, c) Iridium-33.

The altitude profiles result from the ejection of the fragments from the colli-
sion point. Fig. C2 shows the distributions of the ejection velocities of the fragments
of the three satellites using 2.5-m/s bins. These distributions can be roughly ap-
proximated by the following formula

n(v) =
dNv

dv
=
Nf

vs
· ka

1 + a2
, a =

(
v

vs

)b

, (C3)

where n(v)dv is the number of fragments ejected at velocities between v and v+dv,
Nv is the number of fragments ejected at velocities below v, Nf is the total number
of fragments, vs is a characteristic velocity, b ≈ 1.6, and k ≈ 0.57 is a normalization
parameter, such that ∫ ∞

0

n(v) dv = Nf . (C4)

The characteristic velocity vs is approximately 50 m/s for Fengyun-1C, 35 m/s for
Cosmos-2251, and 20 m/s for Iridium-33. Again, the values of b and vs are not
precise and can be floated within certain ranges.

We note that the scale hight hs of the altitude density profile and the char-
acteristic ejection velocity vs are related approximately as

hs ≈ 2vs/ω, (C5)

where ω is an average angular rate of the orbital motion. This is not surprising:
faster ejections should result in wider altitude distributions.

The ejection patterns in the observed events were not symmetric. However,
when we consider all possible collision conditions, the average ejection pattern
should be more symmetric. In a model case of a spherically symmetric ejection
from a circular orbit with the velocity distribution (C3), the altitude residence
density of the cloud of fragments can be calculated as

n(h) =
1

4π

∫ ∞

0

n(v)dv

∫ π

−π

dφ

∫ π/2

−π/2

ρ(h) cosψ dψ (C6)
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where φ is the angle between the tangent to the orbit and the projection of the
ejection direction to the orbital plane, ψ is the angle between the ejection direction
and the orbital plane, ρ(h) is the altitude residence density of a fragment moving
between the perigee hp and the apogee ha of its orbit,

ρ(h) ≈ 1

π
√
(ha − h)(h− hp)

, (C7)

ha,p = h0 +
v

ω
cosψ (2 cosφ±

√
1 + 3 cos2 φ), (C8)

and h0 is the collision altitude. Fig. C3 shows the velocity distribution (C3) in
chart (a) and the altitude profile (C6) in chart (b).

Fig. C3. Spherical ejection: a) velocity profile, b) initial altitude density, c) aged profile.

Mathematically, profile (C6) has a logarithmic singularity at the peak point,
however, it is not practically observable in altitude bin counts. Besides, the peak in
the initial distribution is quickly diffused by the differential evolution of the orbits
of the fragments due to air drag and wide variability of their ballistic coefficients.
Aged profiles are calculated by replacing ρ(h) in (C6) with a weighted distribution

ρ̃(h) =

∫ ∞

0

ρ(h)n(bc) dbc, (C9)

where ρ(h) is still determined by (C7), but the altitudes of the apogee and perigee
are reduced as appropriate for a given ballistic coefficient bc and a given time after
the collision. The average is calculated with a plausible distribution of the ballistic
coefficients n(bc) normalized as ∫ ∞

0

n(bc) dbc = 1. (C10)
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Fig. C3 shows a typical aged profile in chart (c), calculated from (C6)–(C10)
and normalized to the peak value. It is very similar to the profiles in Fig. C1. Also,
the distributions of the inclinations of fragments derived with the above assumptions
are consistent with the observed distributions. Therefore, we find these results
applicable to statistical calculations.


