The Cost of Future Collisions in LEO

E. M. Levin¹ and J. A. Carroll²

¹Electrodynamic Technologies, LLC, USA ²Tether Applications, Inc., USA

6th IAASS Conference Montreal, Canada, 21-23 May, 2013

Insurance Perspective

Insurance Against Untracked Debris and Meteoroids in LEO

• Not sold separately at this time

Can these events happen?

• Yes

Can they be detected?

• Yes

BLITS satellite hit on January 22, 2013

The Risk

Existing risk

- Untracked debris and meteoroids in the current LEO environment
- Use ORDEM, MASTER, or similar models to estimate risk

Future risk

- What if another collision like Cosmos-Iridium injects hundreds of thousands of fragments into LEO?
- Many unknowns, very few precedents
- Would like to have a parametric model to analyze risk and quantify uncertainty

Possible Realities

With some probability, each intact object could be fragmented in a future collision

Full mathematical model: http://electrodynamictechnologies.com/PDF/WhitePaper-2012.pdf

Superimposed States

Superimposed probability-weighted virtual streams of future collision fragments

Total virtual flux of fragments encountered by asset A_n:

$$\Phi_n \approx \frac{k_n}{P_c} \sum_{k,i} \beta_{nk} P_{ki} F_{ki}(m) g_{ki}(H_n)$$

Altitude Distribution

Known altitude distributions of collision fragments

Approximation:

$$n(h, h_0) = \frac{k_0}{h_s} \left(1 + \frac{|h - h_0|}{h_s} \right)^{-b}$$

Mass Distribution

Power law in the range of interest

Average anticipated yield of fragments over 1 g

- Estimated based on currently available data: ~ 24/kg
- $\gamma \approx 0.8$

Lethal Impactors

Sub-gram impactors ("shrapnel") can disable large spacecraft

• They are produced in huge numbers in collisions, but remain untracked

- Conservatively assumed $m_n \sim 1$ g in this study
- But could be as low as 0.1 g

The Losses

Immediate loss

• Asset(s) destroyed in the collision

Long-term delayed losses

- Asset(s) disabled or degraded by impacts of the collision fragments
- Statistically expected total delayed loss:

$$D_c = \sum_n L_n T_n q_n \sigma_n \Phi_n$$

The Cost

The average cost of a collision between intact objects in LEO

Immediate loss

- Statistically expected ~ \$30M
- Most collisions will not involve operational spacecraft

Long-term delayed losses from impacts of the collision fragments

- Statistically expected ~ \$200M (conservative estimate)
- Mostly from impacts on high-value assets

Annual premium component

• To insure all LEO assets against future fragment impacts ~ \$13M (could be more, depending on the lethality threshold)

The Effect of Debris Removal

Annual premium component due to future collision fragments

- Small-scale debris removal will not reduce the premium much
- Wholesale removal of large debris will remediate this risk

The Challenge

- Primary losses from the fragments produced in future collisions will result from their impacts on high-value assets
- High-value assets are typically owned by governments
- Governments are mostly self-insured
- Anticipated annual loss (long-term average) is relatively low
- To appeal to the governments economically, debris removal campaigns should substantially reduce the anticipated annual loss at a comparable cost
- If you can make insurance against future collision fragments unnecessary, your debris removal proposal is very good!